2007 Research Days Abstract Form - Department of Ophthalmology - UNIFESPIEPM

review you (CA)

3. PRESENTATION PREFEREN (REQUIRED) Check one (1)

(b) Poster

(OR) ORBIT (PL) OCULAR PLASTIC SURGERY (RE) RETINA / VITREOUS (RX) REFRACTION-CONTACT LENSES (NO) NEURO-OPHTHALMOLOGY (TU) TUMORS AND PATHOLOGY (ST) STRABISMUS (UV) UVEITIS (LS) LACRIMAL SYSTEM (LV) LOW VISION (CO) CORNEA / EXTERNAL DISEASE (GL) GLAUCOMA (RS) REFRACTIVE SURGERY (CA) CATARACT (US) OCULAR ULTRASOUND (LA) LABORATORY (BE) OCULAR BIOENGINEERING (EP) EPIDEMIOLOGY (EF) ELECTROPHYSIOLOGY	

Deadline: 29/10/2007

ORMAT:
 Abstract should contain:

Titie, Name of Authors, Name of
other authors (maxime
Purpose, Methods, Results, urpose, Methods, Results
Conclusions. Conclusions.
Example: ARV
abstrect Example: ARV
Abstract Book

1. FIRST (PRESENTING) AUTHOR (REQUIRED)

Must be author listed first in body of abstract
$\begin{array}{lll}\text { () R1 } & \text { () R2 } & \text { () R3 } \\ \text { (x) PG0 } & \text { () PG1 } & \text { () Estagiário }\end{array}$ (
() Tecnólogo () PIBIC

OLIVEIRA	FILIPE	
Last Name	First	Middle
CLINICAL TRIALS		$\mathbf{0 1 0 2 7 / 0 6}$
Service (sector)		$N^{\circ} \mathrm{CEP}$

IMMERSION, APPLANATION AND OPTICAL BIOMETRY: WHICH ONE IS BETTER TO CALCULATION OF MULTIFOCAL INTRAOCULAR LENS POWER Filipe de Oliveira, Eduardo S. Soriano, Lincoln Leme Freitas, Cristina Mucciol
BACKGROUND: Many studies have recommended the immersion or optical biometry like the gold -standard method t o multifocal intraocular lens (MIOL) calculation. Although the applanation biometry is widely used to monofocal IOL resulting in anterior chamber depth (ACD) as well as axial length (AL) shortened. PURPOSE: To compare the AL and ACD measurements from three differents biometric methods widely used at present and to evaluate how much the applanation technique can produce error in MIOL calculation
METHODS: A study was perform ed on 92 eyes in 46 patients presenting to clinical practice for cataract surgery with MIOL assessment. Preoperative measurements of AL and ACD was taken with optical (IOLMaster, Zeiss - Germany), immersion and
applanation biometry (Ocuscan RxP, Alcon - USA). All measurements were done for an unique biometrist. The measurements were used to determine the MIOL power based on the third generation formulas.
RESULTS: The AL means obtained were by optical biometry ($23.10 \mathrm{~mm} \quad \pm 0.93$) RESmersion ($23.14 \mathrm{~mm} \pm 0.99$) and applanation ($23.00 \mathrm{~mm} \pm 1.01$). The ACD means
ims were respectively ($3.17 \mathrm{~mm} \pm 0.43$), ($3.21 \mathrm{~mm} \pm 0.41$) and $(3.08 \mathrm{~mm} \pm 0.40)$. The ACD correlation). The AL correlation coefficient was high $(r=0.99)$ to either correlation. average the AL measurements by the applanation were shorter by 0.10 mm compared to optical and 0.14 mm to immersion biometry. This shortened measurements can result in post-operative error in myopic direction.
CONCLUSION: The minimal post -operative error in myopic direction might be avoided to MIOL calculation, then the shortened measurements from applanation biometry is not an accurate method for this purpose.

